The efficiency of balancing the centrifugal juicer with a ball autobalancer in the implementation of the technological process

Keywords: auto-balancing; full-scale experiment; variable imbalance; transitory process; rotor.

Abstract

It is shown that the use of an autobalancer is effective in balancing the centrifugal juicer during the technological process. It improves the vibration characteristics of the centrifugal juicer for bullets of any size. It is shown that the increase in the number of balls leads to the vibration improvement of the state of the centrifugal juicer during the technological process. In the case of small balls and when the treadmill is half full, the vibration (standard deviation of the vibration acceleration) of the centrifugal juicer is reduced by almost 53%. This is explained as follows. In the process of operation of the centrifugal juicer, the imbalance of the sieve and bullets in the autobalancer changes almost continuously. Accordingly, it would help if you changed your autobalancing positions often (many successive transients are carried out). The process of balancing the centrifugal juicer, in general, will be the more efficient, the shorter the duration of each transition process relative to the time interval between changes in imbalance. The transients' duration depends mainly on the distance between the adjacent self-balancing positions of the balls and the forces of viscous resistance to the relative motion of the balls. As the diameter of the balls increases, the fullness of the treadmill decreases. Hence, an increase in the size of the balls leads to an increase in the distance between adjacent self-balancing positions of the balls and to an increase in the duration of transients. With the same amount of oil in the autobalancer, larger diameter balls are more inert and, accordingly, they oscillate longer around their autobalance positions. Sometimes they do not have time to take their self-balancing positions before the next change of imbalance. The obtained results can be used in AB's design for balancing on the go machines with high-speed rotors, in which the imbalance changes pulse and often; to increase the efficiency of IRR self-balancing during operation.

References

Горбенко А. Н. (2015) Массо-инерционные характеристики и безразмерные уравнения движения двухопорного ротора с автобалансиром с учетом массы компенсирующих грузов Наука и образование: научное издание МГТУ им. Н.Э. Баумана. №12. C. 266–294. Gorbenko A.N. (2015) Mass-inertial characteristics and dimensionless equations of motion of a two-support rotor with an auto-balancer taking into account the mass of compensating weights. Science and education. Moscow State Technical University. N.E. Bauman. 12. 266–294. http://dx.doi.org/10.7463/1215.0827773
Гусаров, А. А. (2002) Автобалансирующие устройства прямого действия. М.: Наука, 119 с. Gusarov, A.A. (2002) Direct-acting self-balancing devices. Moscow. Science.
Детинко, Ф. М. (1956) Об устойчивости работы автобалансира для динамической автобалансировки. Изв. АН СССР. ОТН. Мех. и Машиностр. № 4. С. 38–45. Detinko, F. M. (1956) On the stability of the autobalancer for dynamic autobalancing. Izv. Academy of Sciences of the USSR. REL. Mechanics and Machine Building. 4. 38–45.
Нестеренко, В. П. (1985). Автоматическая автобалансировка роторов приборов и машин со многими степенями свободы. Томск: Изд-во Томск. ун-та. 84 с. Nesterenko, V.P. (1985). Automatic auto-balancing of instrument and machine rotors with many degrees of freedom. Tomsk University.
Филимонихин Г.Б., Гончаров В.В. (2013). Стенд центробежной соковыжималки с автобалансиром для определения оптимальных значений параметров автобалансира Вісник НТУ "ХПІ", №70 (1043), "Нові рішення в сучасних технологіях". Харків, С. 22–27 Filimonikhin, G. B., Goncharov, V., (2013) A stand of a centrifugal juicer with an autobalancer to determine the optimal values of the autobalancer parameters. Herald NTU "KhPI". 70 (1043), New solutions in modern technologies. Kharkiv, pp. 22–27 URL: http://library.kpi.kharkov.ua/files/Vestniki/2013_70.pdf
Bykov, B. G. (2013). Auto-balancing of a rotor with an orthotropic elastic shaft. Journal of Applied Mathematics and Mechanics, 77(4), 369–379. http://dx.doi.org/10.1016/j.jappmathmech.2013.11.005
Filimonikhin, G. B., Filimonikhina, I. I., Dumenko, K. M., Lichuk, M. V. (2016). Empirical criterion for the occurrence of auto-balancing and its application for axisymmetric rotor with a fixed point and isotropic elastic support. Eastern-European Journal of Enterprise Technologies. V. 5, N 7 (83). pp. 11–18. http://dx.doi.org/10.15587/1729-4061.2016.79970
Filimonikhin, G. B., Filimonikhina, I. I., Yakimenko, M. S., Yakymenko S. M. (2017). Application of the empirical criterion for the occurrence of auto-balancing for axisymmetric rotor on two isotropic elastic supports. Eastern-European Journal of Enterprise Technologies. V. 2, N 7(86). pp. 51–58. http://dx.doi.org/10.15587/1729-4061.2017.96622
Goncharov, V., Dumenko, K., Nevdakha, A., Pirogov, V. (2017). Optimization by 3D-modeling of the parameters of a centrifugal juicer with a ball balancer under a pulse change of the imbalance. Eastern-European Journal of Enterprise Technologies. V. 3, № 7 (86). pp. 50–58. http://dx.doi.org/10.15587/1729-4061.2017.102241
Gorbenko, A., Mezitis, M., Strautmane, V., & Strautmanis, G. (2019). The impact of an elastic rotor suspender and the size of the compensating mass on the acceleration of the automatic balancer. Procedia Computer Science, 149, 301–306. http://dx.doi.org/10.1016/j.procs.2019.01.139
Guyader, G., Gabor, A., & Hamelin, P. (2013). Analysis of 2D and 3D circular braiding processes: Modeling the interaction between the process parameters and the pre-form architecture. Mechanism and Machine Theory, 69, 90–104. http://dx.doi.org/10.1016/j.mechmachtheory.2013.04.015
Haidar, A. M., & Palacios, J. L. (2016). A general model for passive balancing of supercritical shafts with experimental validation of friction and collision effects. Journal of Sound and Vibration, 384, 273–293. http://dx.doi.org/10.1016/j.jsv.2016.08.023
Hsiang-Yu Hsieh, Chung-Jen Lu. (2015) Application of automatic balancers on a flexible-shaft rotor system, The 22nd International Congress on Sound and Vibration, ICSV22, Florence, Italy, 12-16 July 2015.
Majewski Τ., Szwedowicz D., Marco A. Meraz Melo. (2015). Self-balancing system of the disk on an elastic shaft. Journal of Sound and Vibration. V. 359. 2–20. http://dx.doi.org/10.1016/j.jsv.2015.06.035
Majewski, T. (1988). Position error occurrence in self balancers used on rigid rotors of rotating machinery. Mechanism and Machine Theory. V. 23, іs. 1. pp. 71–78. ISSN 0094-114X, http://dx.doi.org/10.1016/0094-114X(88)90011-0 .
Olijnichenko, L., Goncharov, V., Sidei, V., Horpynchenko, O. (2017). Experimental study the process of the static and dynamic balancing by the ball auto-balancers of the impeller of the axial fan. Eastern-European Journal of Enterprise Technologies. V. 2, № 1 (85). pp. 42–50. http://dx.doi.org/10.15587/1729-4061.2017.96374
Quangang Yang, Ong Eng-Hong, Sun Jisong, Guo Guoxiao, Lim Siak-Piang (2005). Study on the influence of friction in an automatic ball balancing system. Journal of Sound and Vibration. V. 285, іs. 1–2. pp. 73–99. ISSN 0022-460X, http://dx.doi.org/10.1016/j.jsv.2004.08.009
Rodrigues, D. J., Champneys, A. R., Friswell, M. I., Wilson, R. E. (2011) Two-plane automatic balancing: A symmetry breaking analysis. International Journal of Non-Linear Mechanics. V. 46, Iss. 9, pp. 1139–1154.
Sperling, L., Ryzhik, B. , Duckstein, H. (2004). Single-Plain Auto-Balancing of Rigid Rotors. Technische Mechanik. V. 24, No 1. pp. 1–24.
Sperling, L., Ryzhik, B., Duckstein, H. (2001). Two-plain automatic balancing. Machine Dynamics Problems. V. 25 No 3/4. pp. 139–152.
Sung, C. K., Chan, T. C., Chao, C. P., Lu C. H. (2013) Influence of external excitations on ball positioning of an automatic balancer. Mechanism and Machine Theory. V. 69. pp. 115–126. ISSN 0094-114X, http://dx.doi.org/10.1016/j.mechmachtheory.2013.05.009
Thearle, E. L. (1950). Automatic dynamic balancers Part 2 – Ring, pendulum and ball balancers. Machine Design. V. 22, № 10. pp. 103–106.
Published
2020-08-31
How to Cite
GoncharovV. (2020). The efficiency of balancing the centrifugal juicer with a ball autobalancer in the implementation of the technological process. Herald of Kyiv Institute of Business and Technology, 44(2), 31-37. https://doi.org/10.37203/kibit.2020.44.04